Reverse Engineering
Basic File Checks
I’ll check the file type
┌──(venv)─(mark__haxor)-[~/Documents/Pentest/BOF/02-beginner_re]
└─$ file csaw19_beleaf
csaw19_beleaf: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV), dynamically linked, interpreter /lib64/ld-linux-x86-64.so.2, for GNU/Linux 3.2.0, BuildID[sha1]=6d305eed7c9bebbaa60b67403a6c6f2b36de3ca4, stripped
It’s a x64 binary which is dynamically linked and its stripped
Now checking the protection enabled
┌──(venv)─(mark__haxor)-[~/Documents/Pentest/BOF/02-beginner_re]
└─$ checksec csaw19_beleaf
[!] Could not populate PLT: invalid syntax (unicorn.py, line 110)
[*] '/home/mark/Documents/Pentest/BOF/02-beginner_re/csaw19_beleaf'
Arch: amd64-64-little
RELRO: Full RELRO
Stack: Canary found
NX: NX enabled
PIE: PIE enabled
So lets run it to know what it does
┌──(venv)─(mark__haxor)-[~/Documents/Pentest/BOF/02-beginner_re]
└─$ ./csaw19_beleaf
Enter the flag
>>> flag
Incorrect!
It requires inputting the flag
Now i’ll decompile it using ghidra
On checking FUN_001008a1
which is going to be the main function we get this
undefined8 FUN_001008a1(void)
{
size_t sVar1;
long lVar2;
long in_FS_OFFSET;
ulong local_b0;
char local_98 [136];
long local_10;
local_10 = *(long *)(in_FS_OFFSET + 0x28);
printf("Enter the flag\n>>> ");
__isoc99_scanf(&DAT_00100a78,local_98);
sVar1 = strlen(local_98);
if (sVar1 < 0x21) {
puts("Incorrect!");
/* WARNING: Subroutine does not return */
exit(1);
}
for (local_b0 = 0; local_b0 < sVar1; local_b0 = local_b0 + 1) {
lVar2 = FUN_001007fa((int)local_98[local_b0]);
if (lVar2 != *(long *)(&DAT_003014e0 + local_b0 * 8)) {
puts("Incorrect!");
/* WARNING: Subroutine does not return */
exit(1);
}
}
puts("Correct!");
if (local_10 != *(long *)(in_FS_OFFSET + 0x28)) {
/* WARNING: Subroutine does not return */
__stack_chk_fail();
}
return 0;
}
Now i’ll try to rename stuffs there to make it look better
int main(void)
{
size_t len;
long transformInput;
long in_FS_OFFSET;
ulong i;
char input [136];
long canary;
canary = *(long *)(in_FS_OFFSET + 0x28);
printf("Enter the flag\n>>> ");
__isoc99_scanf(&DAT_00100a78,input);
len = strlen(input);
if (len < 0x21) {
puts("Incorrect!");
/* WARNING: Subroutine does not return */
exit(1);
}
for (i = 0; i < len; i = i + 1) {
transformInput = transformFunc((int)input[i]);
if (transformInput != *(long *)(&desiredOutput + i * 8)) {
puts("Incorrect!");
/* WARNING: Subroutine does not return */
exit(1);
}
}
puts("Correct!");
if (canary != *(long *)(in_FS_OFFSET + 0x28)) {
/* WARNING: Subroutine does not return */
__stack_chk_fail();
}
return 0;
}
Now that looks better. So here’s what happening
1. It receives user input then check if the length is less than 33 if it is, it prints incorrect then exit
2. But if it isn't, it does a for loop on the length of the input given
3. while it loops it runs through each character of the input and the tranformFunc compares it with the desiredOutput value
4. Also the desiredOutput characters is stored as an offset of 8bytes
5. If the two are not equal the program exists
6. Checking the tranformFunc shows that the data in stored in the .bss section of the binary
Now we know that our first output is going to be equal to 0x1, the second wil be 0x9 and so on …..
desiredOutput XREF[2]: main:0010096b(*),
main:00100972(R)
003014e0 01 ?? 01h
003014e1 00 ?? 00h
003014e2 00 ?? 00h
003014e3 00 ?? 00h
003014e4 00 ?? 00h
003014e5 00 ?? 00h
003014e6 00 ?? 00h
003014e7 00 ?? 00h
003014e8 09 ?? 09h
003014e9 00 ?? 00h
003014ea 00 ?? 00h
003014eb 00 ?? 00h
003014ec 00 ?? 00h
003014ed 00 ?? 00h
003014ee 00 ?? 00h
003014ef 00 ?? 00h
003014f0 11 ?? 11h
003014f1 00 ?? 00h
003014f2 00 ?? 00h
003014f3 00 ?? 00h
003014f4 00 ?? 00h
003014f5 00 ?? 00h
003014f6 00 ?? 00h
003014f7 00 ?? 00h
003014f8 27 ?? 27h '
003014f9 00 ?? 00h
Here’s the decompiled code for the transformFunc
long transformFunc(char input)
{
long i;
i = 0;
while ((i != -1 && ((int)input != *(int *)(&lookup + i * 4)))) {
if ((int)input < *(int *)(&lookup + i * 4)) {
i = i * 2 + 1;
}
else if (*(int *)(&lookup + i * 4) < (int)input) {
i = (i + 1) * 2;
}
}
return i;
}
Here we can see that it essentially just takes a character, and looks at what it’s index is in the lookup bss array. The characters are stored at offsets of 4 bytes. Let’s take a look at the array
lookup XREF[6]: transformFunc:00100820(*),
transformFunc:00100827(R),
transformFunc:00100844(*),
transformFunc:0010084b(R),
transformFunc:00100873(*),
transformFunc:0010087a(R)
00301020 77 ?? 77h w
00301021 00 ?? 00h
00301022 00 ?? 00h
00301023 00 ?? 00h
00301024 66 ?? 66h f
00301025 00 ?? 00h
00301026 00 ?? 00h
00301027 00 ?? 00h
00301028 7b ?? 7Bh {
00301029 00 ?? 00h
0030102a 00 ?? 00h
0030102b 00 ?? 00h
0030102c 5f ?? 5Fh _
0030102d 00 ?? 00h
0030102e 00 ?? 00h
0030102f 00 ?? 00h
00301030 6e ?? 6Eh n
00301031 00 ?? 00h
00301032 00 ?? 00h
00301033 00 ?? 00h
00301034 79 ?? 79h y
00301035 00 ?? 00h
00301036 00 ?? 00h
00301037 00 ?? 00h
00301038 7d ?? 7Dh }
00301039 00 ?? 00h
0030103a 00 ?? 00h
0030103b 00 ?? 00h
0030103c ff ?? FFh
0030103d ff ?? FFh
0030103e ff ?? FFh
0030103f ff ?? FFh
00301040 62 ?? 62h b
00301041 00 ?? 00h
00301042 00 ?? 00h
00301043 00 ?? 00h
00301044 6c ?? 6Ch l
00301045 00 ?? 00h
00301046 00 ?? 00h
00301047 00 ?? 00h
00301048 72 ?? 72h r
00301049 00 ?? 00h
0030104a 00 ?? 00h
0030104b 00 ?? 00h
0030104c ff ?? FFh
0030104d ff ?? FFh
0030104e ff ?? FFh
0030104f ff ?? FFh
00301050 ff ?? FFh
00301051 ff ?? FFh
00301052 ff ?? FFh
00301053 ff ?? FFh
00301054 ff ?? FFh
00301055 ff ?? FFh
00301056 ff ?? FFh
00301057 ff ?? FFh
00301058 ff ?? FFh
00301059 ff ?? FFh
0030105a ff ?? FFh
0030105b ff ?? FFh
0030105c ff ?? FFh
0030105d ff ?? FFh
0030105e ff ?? FFh
0030105f ff ?? FFh
00301060 ff ?? FFh
00301061 ff ?? FFh
00301062 ff ?? FFh
00301063 ff ?? FFh
00301064 61 ?? 61h a
00301065 00 ?? 00h
00301066 00 ?? 00h
00301067 00 ?? 00h
00301068 65 ?? 65h e
00301069 00 ?? 00h
0030106a 00 ?? 00h
0030106b 00 ?? 00h
0030106c 69 ?? 69h i
Here we can see that the character f is stored at 00301024. This will output 1 since ((0x00301024 - 0x00301020) / 4) = 1 (0x00301020 is the start of the array). This also corresponds to the first byte of the desiredOutput array, since it is 1. The second byte is 0x9, so the character that should correspond to it is (0x00301020 + (4*9)) = 0x301044, and we can see that the character there is l
00301044 6c ?? 6Ch l
00301045 00 ?? 00h
00301046 00 ?? 00h
00301047 00 ?? 00h
00301048 72 ?? 72h r
So the second character is l. Moving on through the rest of the list, we can find the full string flag{we_beleaf_in_your_re_future}
Lets check it out now
┌──(mark㉿haxor)-[~/Documents/Pentest/BOF/02-beginner_re]
└─$ ./csaw19_beleaf
Enter the flag
>>> flag{we_beleaf_in_your_re_future}
Correct!
And we’re done